Features Importance Analysis for Emotional Speech Classification

نویسندگان

  • Jianhua Tao
  • Yongguo Kang
چکیده

The paper analyzes the prosody features, which includes the intonation, speaking rate, intensity, based on classified emotional speech. As an important feature of voice quality, voice source are also deduced for analysis. With the analysis results above, the paper creates both a CART model and a weight decay neural network model to find acoustic importance towards the emotional speech classification and to disclose whether there is an underlying consistency between acoustic features and speech emotion. The result shows the proposed method can obtain the importance of each acoustic feature through its weight for emotional speech classification and further improve the emotional speech classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Nonlinear Emotional Prosody Generation and Emotional Tags

The paper analyzes the prosody features, which includes the intonation, speaking rate, intensity, based on classified emotional speech. As an important feature of voice quality, voice source are also deduced for analysis. With the analysis results above, the paper creates both a CART model and a weight decay neural network model to find acoustic importance towards the emotional speech classific...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Recognizing emotions in speech using short-term and long-term features

The acoustic characteristics of speech are influenced by speakers’ emotional status. In this study, we attempted to recognize the emotional status of individual speakers by using speech features that were extracted from short-time analysis frames as well as speech features that represented entire utterances. Principal component analysis was used to analyze the importance of individual features ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005